-- Pi inside me ?

viernes, 21 de noviembre de 2008



RECREATIONAL MORPHOMETRY



                                           Klly                                                                       


.............................................................................

This blog consists of two sections (two entries , both started at 2008). The blog is updated about once a week .

...........................................................................


MOTIVATION

To attempt the most simple geometric look we have choosen only a few values .Actually be reduced to only three : g , j  and  d .


                                        STARTING   VALUES . (Values g and  j )



                                         SERIES  255  = (1+2+4+8+16+32+64+128)

The series 255 can be identified with  the following items : breath , sigh , blow , run ,action ...


   { We  have  found  an  interesting  article   in  wich  an image  called our  attention  :

 ''A quantitative analysis of the mecanism that controls body size in Manduca sexta '' HF. Nijhout et al. Journal of Biology 2006 , 5 : 16 Pay attention to the image 3b where we see a very illustrative image of the concepts mentioned above . }

***************************************************************************

 Another one series frequently  used in this blog :  series ( 1+1/2+1/16+1/32 ) and
 series  51 = ( 32+16+2+1 )  :



                                                                  series   51 
          
..........................................................................................................................................

On the road , combining g and j  with the series (1+1/2+1/16+1/32) we performed one pretty good approximation to ' Pi ' .

     RIGHT TRIANGLE IN WICH THE SUM OF THE LEGS IS CLOSE TO Pi .



According  to  that  we  have    this  depiction  :


                                        WAYS  TO  DRAW  Pi  .

                         

--------------------------------------------------------------------------------------------

There are two concepts related to the matter developed in this page :

1 . FRACTAL  : structure that has the same appearence at different scale
2 . ACTION     : an atribute of a physical system product of the energy and duration of a process .

-------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------

Will to see recreational relationship among Starting values described previously .
 Take a look at the following relation among Pi , ( g + j and amino acid  Glycine . Glicine is the smallest of the 20 amino acids commonly found in proteins .Glycine is coded for by the codon sequences  GGU , GGA , GGC , and GGG . Instead of codon , will see relations between amino acid - anticodon . So that Glycine anticodons are : CCA , CCU , CCG and CCC .

Glicine  molar mass : [5705]
Cytosine molar mass : [1111]

It's worth to say that we're using  significant digits only :



                                                    GLYCINE  ANTICODON

------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------
 BIOELEMENTS .

Most of biomolecules are made of  Hydrogen , Carbon , Oxygen and Nitrogen .
 Using the Starting values such as Pi , the series 51 = (32+16+2+1) and ( g + j ) :


                                                       BIOELEMENTS  GEOMETRY  .


----------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------

WATER AND CARBON .

Molar mass of the  Water : [18,0156]

Atomic mass of  Carbon : [ 12 ]


                                      WATER , CARBON AND THE SERIES  51  .

.........................................................................................................................



SOME GEOMETRIC OBSERVATIONS IN BIOLOGY .

Now , we will use the series ''255''=(1+2+4+8+16+32+64+128)  as follow :

SERIES OF 22 ELEMENTS . According to an economy's principle  : (1+2+4+8+4+2+1 )
wich remember a palindromic (symetrical) sequence .We call  nymph  sequence :


                                                           NYMPH   SEQUENCE  .



 The  Vulva of Caenorhabditis elegans worm consists of 22 cells . that is , 1+2+4+(8)+4+2+1
.......................................................................................


  Micro RNAs shows typically an average of 22 nucleotids in length .

...............................................................................................


Insulin preproprotein in Homo sapiens has 110 amino acid in length

 Insulin 2 preproprotein of Mus musculus has 110 amino acid in length

.......................................................................................


Mioglobin  molecule of many species has 154 a.a. = 7(22)

.......................................................................................


Disacharides such as sucrose and lactose have 22 atoms of hydrogen

.....................................................................................

Human mitochondrion encodes 22 t-RNA , required for mitochondrial  protein synthesis .

...................................................................................



HUMAN  SKULL  consists of 22 bones =

the cranium bones : occipital , two parietals , frontal , two temporals , sphenoidal , ethmoidal .

the skeleton of the face : two nasals , two maxillae , two lacrimals , two zigomatics , two palatines , two inferior nasal conchae , vomer , mandible .


 VERTEBRAL COLUMN  is formed of a series of 33 vertebrae ( 22 + 11 ) :

seven in the cervical region , twelve in the thoracic , five in the lumbar , five fixed in the sacral , and four fixed in the coccygeal .


THE  BONES  OF  THE  LOWER  EXTREMITY

The hip bone : Ilion , Isquion  and  Pubis (wich are distinct each  to other in the young subject)
Then we have : Femur , Tibia , Patella , Fibula
The bones of the foot : Calcaneus , Talus , cuboid , Navicular , and the first , second and third Cuneiforms .
The Metatarsus  consists of  five  bones .
The phalanges  of the foot  are two in the great Toe and three in each of the other  toes .
   So that  the sum results  33  bones .

[ Source : ''Grey's Anatomy of the Human body '' ]

..............................................................

Green plants need to live and grow the molecule of carbon dioxide (CO2) .

The sum total of atomic number of chemical elements involved is equal to 22 : C-6 , O-8 .

..............................................................

Most of Amino acids are made of carbon , hydrogen , oxygen and nytrogen .

the sum of atomic numbers is :( C-6) +( H-1)+(O-8)+(N-7 )= 22

...............................................

Nucleic acids , DNA and RNAs are made of carbon , hydrogen ,oxygen , nytrogen and phosphorus . atomic number of phosphorus is 15 .

so that we apply here a combination or sum of series 22 +15 .

............................................

Dental formula of the ancestral placental mammal is :

I-3/3 , C-1/1 , P-4/4 , M-3/3 . The total are equal to 44 .

Dental formula in Human species (adult) is : 16 teeth in the upper jaw and 16 in the lower jaw .

Using our recreational form we will write as follow :

(1)+(2)+(4)+(8)+(4)+(2)+(1) where numbers coloured in orange has been removed .

**************************************************


 SETS   OF   THINGS   .

Will  to apply the series 51=(32+16+2+1)  in such a way that exhibits symmetrical appearance :

  Say  (32+16+2+1+2+16+32) . We call  butterfly sequence :

                                             BUTTERFLY   SEQUENCE   .


For  instance , the  worm  Caenorhabditis elegans  has (when adult)  959  cells . Applying
the series  51  we've  performed the following depiction :


                                                          C. ELEGANS   CELLS  .


    Nervous  system  consists  of  302 Neurons
Here you can play with this subject :



                                                        C . ELEGANS  NEURONS  .
 

( source WORMATLAS  )

.................................................................................................................




 
                               


                                                

































































































































































































































































































































Licencia Creative Commons Biology and geometry por A . Coe se encuentra bajo una Licencia Creative Commons Atribución-NoComercial 3.0 Unported.


































sábado, 22 de marzo de 2008

RECREATIONAL GEOMETRY OF PHYSICAL CONSTANTS










through the "magnifying glass" ()()()()()()()()()()()()()()()()()()()()()()()()()()()() Past year I bought a nice device .

without trade mark we call it monday ,

because the day we bought it .

Like a special lens it's able

to watch scientific numbers

under a geometrical point of view,

applying one set of few parameters

(see images in this page)

To test monday's skills

we'll gather all type of data .

Searching in the internet's published issues

At the bottom of this page

there is a collection of

'' geometric - entertainment '' in wich

we're using , most of times , the significant figures

of some physical constants and other scientific values .

It's worth to say that the source of the values used

are The NIST  (That is  CODATA recomended values ).

Monday's tool-kit .

1- Starting values : Numbers described in the following figure :




Two physical concepts inspire us :

2- Fractal : Structure that has the same appearance at different scale . In reference to that will use the series (32+16+2+1) or any other numerical series akin to that .

3- Action : An atribute of a physical system product of the energy and duration of a process .Combining some of the ítems descibed before . For example take a look at an approximation to Pi that we obtained combining the series (51) and starting values ( g + j ) :

                            Right triangle in wich the sum of the legs is close to Pi .

According to the formula described above will draw other ways to depict Pi besides the typical circle :



                                                            Ways to draw Pi .


On the other hand will use two geometric algorithms clearly analogous to derivative and integral calculus  :






One formula we've used several times . It includes the
parameter  d described in ''starting values'' and Pi :

                                       
                                            MONDAY'S SHELL ALGORITHM  .

For instance will illustrate with the following equation in wich we use four constants .
Significant figures writed in brackets :

compton wavelength : [242631] proton wavelength :[132141]

Planck constant : [662607] electron volt : [16021765]


Planck constant , electron volt , compton wavelength , proton wavelength .

............................................................................................................................

PLANCK CONSTANT .

The significant figures of the Planck constant, h :[662607]

As for the elementary charge , e :[16021765]

                                               Planck constant in relation to electron volt .

-----------------------------------------------------------------------------------------

Planck constant - electron volt .

eV:[16021765]
:[662607]


                                           Elementary charge - Planck constant .





-----------------------------------------------------------------------------------------
Boltzmann  constant approximation .

Significant digits of the values :

Planck constant , h :[662607]
Boltzmann constant , K : [138065]


                                               Boltzmann  constant , Planck constant .

....................................................................................................


Proportionality between Planck mass and nucleon mass .

Using the significant figures of values , ( in eV units ).

Neutron mass : [939565]
Proton mass : [938272]
Planck mass : [ 1221 ]


                                                  Planck mass - Nucleon mass   .
----------------------------------------------------------------------------------------------

MONDAY'S  SIGH  ALGORITHM .

Will to explore relations among one couple of values (V1 , V2) , the series ''255'' and Avogadro's constant . The following figuration shows the basic rule .


                                          MONDAY'S  SIGH  ALGORITHM .


For instance we've performed one recreational view of Planck's length based upon ''sigh's algorithm''  :


Items used in the formula (significant figures) are :

Planck length : [161616]

Avogadro's number : [60221413]


                                           Planck length - Avogadro's number .


--------------------------------------------------------------------------------------------
Application of sigh algorithm to the mass of some primordial elements .

Values  involved in the formula :
Hydrogen :[1007825]
Helium :[40026]
Carbon :[ 12 ]
Nitrogen :[ 14 ]
Oxygen : [ 16 ]


                              Hydrogen , Helium , Carbon , Nitrogen , Oxygen mass .





..........................................................................................................................

Relationship between Planck mass and proton mass .

Significant  values given in electronvolts : Planck mass :[122096]

                                                                     Proton mass : [938272]


                                                          Planck mass , proton mass  .


.......................................................................................................................................


 

The case in wich Black hole entropy is equal to Boltzmann constant :

Inspirated by Bekenstein-Hawking formula of black hole entropy , will describe
a numerical curiosity based upon series 51 and a surface equivalent to square root of two .
Lp , Planck length : [161616]

                                                     Black hole entropy , Boltzmann constant .

If we write two new items in the above formula , will obtain the inverse of fine structure constant :

                                            Fine structure constant-Planck constant (eV)

........................................................................................................................

Neutron - proton mass ratio .

Neutron mass , in eV : [939565] . Proton mass : [938272]


                                                        Neutron-proton mass ratio  .

...........................................................................................................................

Relationship among Planck mass , proton mass , Planck constant and Boltzmann constant :

Planck mass : [21765]
Proton mass : [167262]

Boltzmann constant : [138065]
Planck constant : [662607]

Avogadro's number : [602214]


               Planck mass - proton mass . Boltzmann constant - Planck constant .

........................................................................................................................


Geometric curiosity about gravitation constant , speed of light , electron mass and Compton wavelength :

Significant figures of constants , G :[66734]  C :[299792458]  em :[9109382]
                                                  
                                                   /\c : [242631]


                                    Newtonian constant of gravitation , electron mass .

.....................................................................................................................

Nucleon energy in relation to Planck constant gives frequency mode of vibration .


Neutron mass + Proton mass :[334755]
Planck constant : [662607]
Avogadro number : [602214]
Speed of light : [299792458]


                                               Nucleon frecuency mode of vibration .


..........................................................................................................................


The critical density of the universe in relation to dark energy parameter .

Here we apply the parameter  ''omega-lambda''  :[0.696] as the Planck mission shows .
Also will write critical density formula as mass-energy equivalent .

G : [66734]   HO : [ 698 ]


                                          Universe critical density - dark energy .


............................................................................................................................


Relationship between Newtonian constant of gravitation over h bar c and nucleon mass :

G* :[6708]  , N , neutron mass : [939565] , P , proton mass : [938272]

                                         Newtonian constant of gravitation over h bar c .

...........................................................................................................................


Volume called (301)  :

                                                              Volume (301)

V(301) combined with Pi  and placed in  a surface (artistical depiction) :

                                                              Surface Pi(301)



.........................................................................................................................


Recreational  look at the quantum vacuum  force at an individual case of frequency mode of vibration .

Significant digits of values used in the following approximation :  h Planck constant :[662607]  
 C , speed of light in vacuum : [29979246]     LP , Planck length : [161616]


                                                  Quantum vacuum force .


Now let us compare both equations posted before , that is the Planck force and the above vacuum  force :

 
 
                                          Vacuum  force in relation to Planck force  .

............................................................................................................................

Obtaining the mass of the electron and the Compton wavelength from vacuum  force (and viceverse) :

em : [9109382]   /\c : [242631]   tp , Planck time : [539095]


                                                    Electron  force (electron acceleration) .

........................................................................................................................


Planck momentum :

mp , Planck mass : [21766]  C , speed of light in vacuum [299792458]

Alpha , fine structure constant : [7297353]



                                                           Planck  momentum  .

........................................................................................................................

Quantum energy at Planck temperature :

Here we'll apply Wien's law (peak wavelength)

h , Planck constant :[662607]  C , speed of light in vacuum :[299792458]

/\= b/T(Wien's law)  where  b = [289777]  and  Tp :[141676]




                                         Quantum energy at Planck temperature .

..........................................................................................................................


Numerical curiosity among higgs boson , Planck mass , Proton mass and W boson mass .

After Particle data group published issue , the mass of the particles described below are :

, Higgs boson :[126]  P , proton mass :[938272] W boson : [804]
 mp , Planck mass :[1221]



                                                Higgs boson , Planck mass .

............................................................................................................................

An individual case in wich Casimir force ''is equal'' to gravity force .

Howsoever our intention is merely recreational , we will refrain from using powers of ten .

h(bar) , reduced Planck constant : [1054572]
c , speed of light in vacuum : [299792458]

                                                          Casimir force - gravity force  .

........................................................................................................................
 
Proton-proton collision in relation to (g + j ) values and the series 51 .

Below , values of the particles involved :


 
     h/e Planck constant in eV : [41356675] 
 
 
                                          Proton colission geometry .

..........................................................................................................................
 
Nuclear fusion akin to above expression .

(A rare case in this blog where it is not neccesary to use significant figures )

All units are MeV  :

n , neutron mass = 939.565     He , Helium-4 binding energy = 28.3   ER , energy released = 17.59

H2 , deuterium binding energy = 2.22452    H3 , tritium  b.e. = 8.482



 
                                             Nuclear  fusion  reaction  geometry .


.........................................................................................................................

Numerical curiosity in Hawking formula for black hole entropy .

( It is striking that the right side of the equation is equal to the above formula of nuclear fusión ?)

Significant figures of constants :

Lp , Planck length : [161616]    KB , Boltzmann constant : [138065]  C , speed of light in vacuum : [299792458]   h , Planck constant : [662607]   G , Newtonian constant of gravitation : [66736]

                                                  Hawking's black hole entropy  .


..........................................................................................................................

Gravitational potential energy in relation to the physical Action of one photon .

G : [66735]  mp : [21765]  h : [662607] C : [299792458]

                                          Gravitational potential energy - photon action .

.......................................................................................................................

Gravitational potential energy between Earth - Moon

(Just for fun) what about gravitational potential energy between the Earth and the Moon , both separated by the distance light travels in one second .

Significant figures:

Mass of the Earth :[ 5972 ]   Mass of the Moon : [ 7347 ]

G : [6674]  C : [299792458]   h : [662607]

                                            Earth - Moon gravitational potential

..........................................................................................................................




............................................................................................................................

A geometric view at some coupling constants  .

The following formula relates  fine structure constant (alpha- EM ), Strong coupling constant (alpha-s)  and gravitational coupling constant (alpha''- G) that refers the ratio of the mass of the proton and the Planck mass , squared .
As for the values (according to Particle data group ) :

alpha-em = 0.007297353     alpha-s = 0.1189  alpha''-G = 5.905 x 10^-39 .

                                           Physical coupling constants geometry .

..............................................................................................................................

A geometric view at some cosmological parameters .

According to Planck misión data the values of the cosmological parameters described below are :

omega-c = 0.268   omega-/\ = 0.683   omega-b = 0.049

                                          cosmological parameters geometry .

..............................................................................................................................

A recreational look at the Planck scale.



When write Physical coupling constants and cosmological parameters in the way in wich is described below , we obtain a simple geometric value that agree with the Planck scale :


                                                Planck scale geometry  .

...............................................................................................................................

                                               Powers of ten geometry .


                                                Starting length and Surface .


The formula described below is inspired by the two preceding images . The left side of the equation belongs to the physical world . The right side belongs to the geometric realm .

As for the Planck length , the recommended value in S.I. units : 1.6162 x 10^-35  m .

                                                   Planck's  area  geometry  .

...........................................................................................................................

Geometric relationship among the mass of the electron , the neutron and the proton .

Symbol alpha refers to fine structure constant = 0.007297353
The mass expressed in electronvolts :

e = 0.51009989 MeV    N = 939.56536  MeV   P = 938.272 MeV


            Electron mass,neutron mass,proton mass ,fine structure constant .


......................................................................................................................

Geometric ratio between electron mass and Planck mass .

 electron mass = 0.511 x 10^6 electronvolts

 Planck mass = 1.221 x 10^28 electronvolts

Avogadro's number = 6.02214 x 10^23


 
Electron mass - Planck mass ratio
.........................................................................................................................

Planck temperature,Planck frequency,today's temperature,today's frequency .


Wp = 1.855 x 10^43 Hz ,   Wt = 1.602 x 10^11 Hz

 Tp = 1.417 x 10^32 K  ,  Tt = 2.725 K

Avogadro's number = 6.022 x 10^23


      Planck frequency , today's frequency , Planck temperature , today's temperature.


.........................................................................................................................

Today's energy density of the universe - Planck's energy density :

The CMB (cosmic microwave background) temperature  of  2.725 K coresponds to an energy

density of  0.26 eV .  On the other hand Planck's energy density is the value obtained by dividing

 Planck's energy over Planck's volume  =  2.892 x 10^132  eV . 
 
As for Avogadro's number = 6.02214 x 10^23


                                          Today's energy density - Planck energy density

.............................................................................................................................

A geometric value resulting from relationship among density-temperature-frequency in Planck's era and in the present Universe .


Densities values were previously described . Today's temperature = 2.725 K

Planck temperature = 1.417 x 10^32 K  . Planck frequency = 1.855 x 10^43 Hz

Today's frequency , according to CMB (cosmic microwave background) = 1.602 x 10^11 Hz

Note the Planck scale squared .

                                          Density , Temperature , Frequency , Geometry .

................................................................................................................................

As for the age of Universe in relation to several physical constants .

According to the data of Planck mission the age of Universe  to  is close to  4.353 x 10^17 seconds

The other values described below are : speed of light , Planck's length and Avogadro's number .

Note that the Planck scale appears explicitly in the formula .



                                       Age of Universe , Planck length , speed of light .

..........................................................................................................................

Particular view of ideal gas law :

Starting from ideal gas law will consider a special gas inside  a particular cylinder  under Planck

temperature . The following formula suggest that resulting pressure is the inverse of the gravitational

constant  G .


                                                            Ideal gas law geometry .

......................................................................................................................

Ideal gas law in a sphere .

Let's see what happens if the gas is in a sphere instead of a cylinder :



                                                   Gas law in a sphere .

.............................................................................................................................

Ideal gas law in a sphere whose radius is Planck length .

Note that in the equation appears Avogadro number (in addition to the Avogadro number implicitly associated to the constant R) .


                                          Gas law in a Planck sphere  .

.............................................................................................................................

Ideal gas law in the case in wich Planck force is involved .

After assigning different values to the variables of the equation , after making the relevant calculations appeared the value of the fine structure constant ( Alpha ) . By the way , Planck force  multiplied by Pi is equal to vacuum force if we consider Planck frequency .



                                           Ideal gas law , Planck force  .

.........................................................................................................................




Planck temperature - today temperature .


According to series 51 and the rectangle   ( g + j ) depicted before , will describe the ratio between Planck temperature , 1.4168 x 10^32 K  and today's temperature (according the Cosmic microwave background) , 2.7255 K .


                                                  Planck temperature-today temperature .

........................................................................................................................

Production of Higgs boson from electron-positron collision .

Consider the case in wich one electron collides with a positron . The two can merge to form a virtual W boson wich can then emit a Higgs boson .

As for the masses involved (GeV) : electron = 0.000511 , W = 80.4
Note that the right side of the equation belongs to the same that those related to nuclear fusión , black hole entropy and proton - proton collision , all described before .


                                           Higgs boson from fermions .

..................................................................................................................................
Production of Higgs boson from proton-proton collision :

Follows another one example of the use of the series (51) and the symmetry (g + j )although in this case appears only one value (square root of two). The case in wich two protons collide and a Higgs boson results after the event . The mass of proton = 0.938272 GeV
Higgs boson mass (published) = 124.99 GeV .



                                            Higgs boson from  Proton collision .

..........................................................................................................................
..........................................................................................................................

RECREATIONAL SCIENCE .
EASY EQUATIONS FOR A COMPLEX UNIVERSE.

We recently made an article concerning the geometry of the Universe . The paper named : The Universe as a Torus .

                                                 UNIVERSE  GEOMETRY EQUIVALENCE .

In that article as in other will apply the most simple geometry , looking for  elementary symmetries.
Write down in this blog successive contributions on these issues .
In addition to numerical equivalence between two volumes ( torus-Avogadro) and (polyhedron-speed of light) there is a third equivalence : ( proton Compton wavelength cubed -Torus volume) .
 
Definition of Torus-3 :



Definition of C3 :





Numerical equivalence Torus-3 and C3 :


(Inverse) Numerical relationship Avogadro's number - Proton Compton wavelength :

 


 
(Inverse)Numerical equivalence . Torus 3 and Proton Compton wavelength cubed :                                           
 
 
 
 
An other universe geometry equivalence depiction :
 
 
 
Geometric relationship between cosmological constant and Avogadro number : 
 
 
Surface area equivalences . An alternative view of the above formula :



An 'elementary' Surface used as numerical distiller :



Geometric distilled from proton energy :

 

The Torus , the Hubble parameter and a numerical frame .Where  h is a dimensionless number  Assumed h = 0.7:


Alternative view when two volume are retated :


Schematic depiction of the above equation  :





 

An other  vectorial look in wich values involved include : Euler number and inverse of fine structure constant . Besides the Torus-3  :






 Development of the Torus-3 from symmetry (g + j ) ,  the Neutron-Proton mass ratio N/P and the  series akin to the series (32+16+2+1) used time ago for an numerical approximation to Pi . Symbol e refers to Euler number :


 
                                                   The evolution of a (particular) Universe .


Numerical equivalence between (A B^2 ) and an other type of Torus :




According to above equations will depict the development from (smooth) universe  , Torus-03 to a granulated one , ie Torus - 3 in wich Avogadro's number appears .



                                             geometric beginning and evolution of a Universe

.................................................................................


Torus-3 , Planck mass-energy and the mass-energy of the electron from the geometrical point of view .


........................................................................................................

Hubble parameter , Proton Compton wavelength , Parsec , Speed of light .






Relationship between Planck energy density and (today) Dark energy density :




























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Licencia Creative Commons Biology and geometry por A . Coe se encuentra bajo una Licencia Creative Commons Atribución-NoComercial 3.0 Unported.